43 research outputs found

    Dry Rotary Swaging with Structured Tools

    Get PDF
    AbstractRotary swaging is a cold bulk forming process. The diameter of the workpiece is reduced incrementally by oscillating movement of the tools. The established processes use lubricants which fulfill necessary functions such as lubricating, cooling and cleaning of the tools. Disadvantages caused by the use of lubricant are costs of recycling, replacement of lost coolant and for the cleaning of the workpiece. To eliminate the lubricant it is necessary to substitute the functions of the lubricant in other ways. For example by means of coating and structuring of the tools.In this study infeed rotary swaging with structured tools is investigated using finite element simulations. Different structures are implemented in the reduction zone of the tools. The influence is investigated by the radial and axial process forces. Additionally first structured tools are manufactured and experimentally tested. The results of modeling and testing are discussed

    FEM simulation of infeed rotary swaging with structured tools

    No full text
    Rotary swaging is an incremental cold forming process for rods and tubes. Infeed rotary swaging with structure in the reduction zone of the tools is investigated using a two dimensional finite element simulation. A few geometrical parameters are varied, for cosine and skew stairway shapes. The effective tool angle is kept constant. The influence is evaluated by the radial and axial process forces. Furthermore, the material flow is visualized by the neutral plane. The simulation results are quantitatively compared to each other to analyse the reaction force FA, which acts against the feeding force. Also, the results serve to find suitable geometries to be transferred to rotary swaging tools for practical application. It is shown that the shapes have a significant effect on the forces and the location of the neutral plane. Finally a first swaging tool is modified with an exemplary geometry for experimental investigations

    Influence of the relative rotational speed on component features in micro rotary swaging

    No full text
    Micro rotary swaging is a cold forming process for production of micro components with determined geometry and surface. It is also possible to change the microstructure of wires and hence the material properties. Swaging dies revolve around the work piece with an overlaid radial oscillation. Newly developed tools (Flat Surface Dies, FSD) feature plain surfaces and do not represent the geometry of the formed part as in conventional swaging. Using these tools allows for producing wires with triangle geometry (cross section) as well as a circular shape. To test the influence of FSD on material properties by micro swaging a new method is investigated: the variation of the relative speed between the specimen and dies in infeed rotary swaging. During this specific process copper (C11000) and steel (304 Alloy) wires with diameter d0 = 1 mm are formed. It is noticed that the mechanical characteristics such as ductility and strength differ from the characteristics after conventional swaging. Moreover this approach enables new possibilities to influence the geometry and the surface quality of wires. The impact of the relative speed on the processed wire features is described in this paper

    FEM simulation of infeed rotary swaging with structured tools

    No full text
    Rotary swaging is an incremental cold forming process for rods and tubes. Infeed rotary swaging with structure in the reduction zone of the tools is investigated using a two dimensional finite element simulation. A few geometrical parameters are varied, for cosine and skew stairway shapes. The effective tool angle is kept constant. The influence is evaluated by the radial and axial process forces. Furthermore, the material flow is visualized by the neutral plane. The simulation results are quantitatively compared to each other to analyse the reaction force FA, which acts against the feeding force. Also, the results serve to find suitable geometries to be transferred to rotary swaging tools for practical application. It is shown that the shapes have a significant effect on the forces and the location of the neutral plane. Finally a first swaging tool is modified with an exemplary geometry for experimental investigations

    Handling in the Production of Wire-Based Linked Micro Parts

    No full text
    For simplified processing and the enhancement of output rate in multi-stage production, micro parts are handled as linked parts. This contribution discusses handling specific challenges in production based on an exemplary process chain. The examined linked parts consist of spherical elements linked by wire material. Hence, the diameter varies between the wire and part. Nevertheless, the linked parts must be handled accurately. The feed system is an important component too, but special focus is given to the guides in this present study. They must adapt to the diameters of both the parts and the linking wires. Two alternative variants of adaptive guides are presented and investigated under the aspects of precise radial guiding, vibration isolation, damping behavior and friction force

    Influence of the relative rotational speed on component features in micro rotary swaging

    No full text
    Micro rotary swaging is a cold forming process for production of micro components with determined geometry and surface. It is also possible to change the microstructure of wires and hence the material properties. Swaging dies revolve around the work piece with an overlaid radial oscillation. Newly developed tools (Flat Surface Dies, FSD) feature plain surfaces and do not represent the geometry of the formed part as in conventional swaging. Using these tools allows for producing wires with triangle geometry (cross section) as well as a circular shape. To test the influence of FSD on material properties by micro swaging a new method is investigated: the variation of the relative speed between the specimen and dies in infeed rotary swaging. During this specific process copper (C11000) and steel (304 Alloy) wires with diameter d0 = 1 mm are formed. It is noticed that the mechanical characteristics such as ductility and strength differ from the characteristics after conventional swaging. Moreover this approach enables new possibilities to influence the geometry and the surface quality of wires. The impact of the relative speed on the processed wire features is described in this paper

    Dry Rotary Swaging - Tube Forming

    No full text

    Reducing Abrasive Particle Generation in Dry Rotary Swaging by Utilizing DLC Hard Coated Dies

    No full text
    The emphasis of this paper is the investigation of the impact of the diamond like carbon (DLC) hard coating system on the amount of abrasive particles being generated during dry rotary swaging. Rotary swaging experiments applying coated and uncoated macro structured forming dies were carried out against aluminum and steel work pieces varying the process parameter feed velocity. It was found that DLC coatings effectively reduce the generation of abrasive particles from the work piece. For dry machining of aluminum the amount was reduced to a tenth of the original quantity achieved with uncoated dies. The results are discussed with regard to the mechanics of interfacing surfaces. Additionally, forming dies exhibiting macro structures surfaces of improved design were introduced and applied in dry rotary swaging experiments, which allowed minimizing the abrasive particle generation
    corecore